Секреция желчи

(Иллюстрация удалена) Рис. 6-3. Трубчатая железа желудка. (По: ItoS., Winchester R.J. The final structure of the gastric mucosa in the bat. J. Cell. Biol. 16: 541,1963; Yamada Т., Alpers D. H., Owyang C„ Powell D. W., Silvcrstein F. E„ eds. Textbook of Castroenterology, 2nd ed. Philadelphia:.!. B. Lippincott, 1995; 1: 297.) Стимуляция секреции кислоты осуществляется посредством как нервных, так и гуморальных механизмов (рис. 6-5) и традиционно делится на три фазы. Данное деление на фазы связано не с самими механизмами стимуляции, а с источниками этой стимуляции или ингибирования секреции. Сложнорефлекторная фаза секреции желудочного сока вызывается видом, запахом и вкусом пищи и происходит через влияние блуждающего нерва на париетальные клетки. Желудочная фаза секреции осуществляется механическим растяжением желудка пищей, которое воспринимается специальными рецепторами растяжения в стенке желудка и реализуется через рефлекторную дугу, включающую блуждающий нерв. На секрецию в данной фазе влияют такие специфические компоненты пищи, как пептиды, аминокислоты, кофеин, этанол, кальций, которые стимулируют выработку гастрина — сильнейшего гуморального стимулятора секреции соляной кислоты. Кишечная фаза секреции желудочного сока связана с растяжением тонкой кишки химусом, а также с цирку-' пирующими в крови аминокислотами.

Рис. 6-4. Транспорт ионов в париетальной клетке желудка. Апикальный участок мембраны содержит Н+,К+-АТФазпый насос и каналы для транспорта К+ и Cl–. Базолатеральный отдел мембраны имеет насосы для К+, белки, обменив(Иллюстрация удалена)ающие Сl–/НСО3– и Na+/H+, а также Nа+,K+-АТФазный механизм, которые поддерживают клеточный гомеостаз в состоянии покоя и при стимуляции секреции. (По: Yamada Т., Alpers D. В., Owyang С, Роwell D. W., Silverstein F. E., eds. Textbook of Gastroenterology, 2nd ed. Philadelphia: J. B. Lippincott, 1995; 1:312.) В основании трубчатых желез в теле и дне желудка располагаются главные клетки, секретирующие пепсиноген. Пепсиноген накапливается в зимогенных гранулах и высвобождается в просвет желудка под действием стимуляции блуждающим нервом (ацетилхолин) и, возможно, под действием пептидных гормонов, таких как гастрин и холецистокинин. В кислой среде пепсиноген аутокаталитически превращается в пепсин, обладающий в данной среде протеолитической активностью. Под влиянием пепсина происходит начальный этап переваривания белков в желудке, особенно разрушение коллагена. Пептиды, образующиеся при расщеплении белков пепсином, стимулируют выработку гастрина и холецистокинина, что является важным звеном в координации регуляции переваривания, необходимого для последующей абсорбции. Кроме того, кислый химус, поступая в тонкую кишку, стимулирует выработку не только холецистокинина, но также и секретина — гормона, способствующего образованию желчи и поджелудочного сока, богатых бикарбонатами. Липаза желудка, вырабатываемая клетками дна желудка, не играет существенной роли в катаболизме пищевых жиров.

Желудок также выполняет функции депонирования и перемешивания пищи. Стенка желудка имеет три слоя мышц: наружный — продольный, средний — циркулярный и внутренний — косой. Циркулярный слой неравномерен: в дистальном отделе тела желудка и в антральной его части имеет большую толщину по сравнению с проксимальным отделом желудка. С помощью этих мышц желудок удерживает пищу. В момент, когда происходит механическая стимуляция глотки или пищевой комок растягивает пищевод, проксимальные отделы желудка (тело и дно) расслабляются для приема пищи (объемная релаксация). Этот процесс также регулируется блуждающим нервом. Растяжение желудка большими объемами пищи стимулирует перистальтические сокращения антрального отдела и проталкивание (Иллюстрация удалена) Рис. 6-5. Регуляция секреции соляной кислоты в желудке. Показана основная (лиганд-рецепторная) регуляция выработки НС1 обкладочными клетками. D-клетки, соматостатиновые клетки; G-клетки, гастриновые клетки. (По: Feldman M. Acid and gastrin secretion in duodenal ulcer disease. Regul. Pcpt. Lett. 1: 1, 1989. Yamada Т., Alpers D. H., Owyang C., Powell D. W„ Silverstcin F. E., eds. Textbook of Gastroenterology, 2nd ed. Philadelphia: J. B. Lippincott, 1995; 1: 308.) пищи к привратнику и двенадцатиперстной кишке. Проглоченные твердые частицы измельчаются до размеров меньше 1 мм, что увеличивает соотношение площадь—масса пищевых частиц и облегчает действие ферментов в тонкой кишке, приводя к более эффективному перевариванию. В желудке происходит избирательная задержка крупных частиц (желудочное "просеивание") и их измельчение, что предотвращает нарушение абсорбции питательных веществ. Измельчение и просеивание в желудке осуществляется за счет сокращения антрального отдела, с силой проталкивающего химус в направлении привратника, и столь же сильного обратного движения химуса при закрытии привратника. Эти движения разбивают крупные частицы химуса, если они не проходят в привратник, и позволяют мелким частицам (< 1 мм) пройти в двенадцатиперстную кишку

Пища, богатая питательными веществами, задерживается в желудке для более тщательной обработки и лучшего всасывания в тонкой кишке, что регулируется кишечно-желудочным рефлекторным механизмом. Углеводные компоненты пищи поступают в двенадцатиперстную кишку первыми, за ними следуют белки и затем жиры. Гиперосмолярная пища дольше задерживается в желудке благодаря механизму ингибирующей обратной связи после начала поступления ее в кишечник. Жидкая пища выходит из желудка пропорционально ее объему, этот механизм называется кинетикой "первого порядка". В целом жидкость выходит из желудка раньше твердой пищи, эвакуация которой происходит неравномерно: имеется начальный период задержки, затем — продолжительная линейная фаза, после которой наступает стадия очень медленного выхода. Линейная фаза выхода твердой пищи не зависит от ее объема и называется кинетикой "нулевого порядка". Привратник, антральный отдел и двенадцатиперстная кишка функционируют при опорожнении желудка как единый комплекс. Сокращения происходят последовательно от антрального отдела к привратнику и двенадцатиперстной кишке. Даже в случаях резекции привратника или пилоропластики процесс опустошения желудка сохраняется нормальным. Денервация проксимального отдела желудка ускоряет выход жидкости и не влияет на продвижение твердой пищи; хотя денервация антрального отдела с денервацией проксимального отдела ускоряет выход жидкости из желудка и замедляет выход твердой пищи.

Секреция желчи



Желчь продуцируется гепатоцитами и секретируется в кишечник в объеме около 500 мл в сутки. Желчь содержит соли желчных кислот, желчные пигменты, холестерин и другие липиды, а также щелочную фосфатазу. Желчные кислоты и их натриевые и калиевые соли необходимы для всасывания жиров. Эти соли конъюгируют с таурином или глицином, что повышает их гидрофильность и стабильность в тонкой кишке; по структуре они близки к холестерину. Гепатоциты вырабатывают холевую и хенодезоксихолевую кислоты, являющиеся первичными желчными кислотами. Под влиянием бактерий в тонкой кишке они модифицируются во вторичные желчные кислоты: дезоксихолевую, литохолевую и урсодезоксихолевую. Когда желчные кислоты через желчный проток и сфинктер Одди попадают в двенадцатиперстную кишку, они смешиваются с перевариваемыми липидами и жирорастворимыми витаминами, образуя при этом мицеллы, т. е. водорастворимые комплексы, из которых липиды легко абсорбируются. Образование мицелл стабилизируется в просвете кишечника в присутствии фосфолипидов и моноглицеридов, которые снижают их поверхностное натяжение. Мицеллы участвуют в эмульгировании жиров и увеличивают площадь поверхности для гидролиза, а также подготавливают жиры для всасывания в кишечнике. Желчные кислоты сами являются регуляторами выработки желчи в печени. Они реабсорбируются в тонкой кишке 4—15 раз в сутки вторичным активным транспортом (с электролитами) и попадают в систему воротной вены для рециркуляции. Как только желчные кислоты поступают в печень, по механизму отрицательной обратной связи происходит угнетение синтеза новых желчных кислот. Процесс кишечно-печеночной циркуляции желчных кислот представлен на Рис. 6-6. Без такой циркуляции наблюдается нарушение всасывания жиров, поскольку печень не в состоянии обеспечить достаточный синтез новых желчных кислот в количестве, соответствующем поступающим в кишечник липидам. В норме ежесуточная потеря желчных кислот с калом незначительна, и, следовательно, относительно невелик ежесуточный синтез желчных кислот в печени.

Клетки желчного протока, как и клетки слюнных протоков, изменяют состав секрета за счет добавления в него бикарбоната и воды, поэтому окончательная желчь имеет щелочную реакцию и изоосмолярна плазме крови. Это обеспечивает нейтрализацию кислого химуса желудка. Желчный пузырь концентрирует желчь, вырабатываемую печенью, и выделяет ее в желчный проток и двенадцатиперстную кишку. Этот процесс регулируется холецистокинином. Клетки желчного протока увеличивают секрецию воды и бикарбоната под действием секретина. И секретин, и холецистокинин вырабатываются клетками глубоких отделов слизистой оболочки проксимального отдела тонкой кишки. Эти гормоны обладают синергическим действием на секрецию желчи и сока поджелудочной железы.

Рис. 6-6. Кишечно-печеночная циркуляция желчных кислот (ЖК) у здорового человека. (По:

Carey M. С., Cahalane M. J. Enterohepatic circulation. In: Arias l.M.,JakobyW. В. .Popper H., Schachter D., Shafritz D. A., eds. The Liver: Biology and Pathology, 2nd cd. New York: Raven Press, 1988:576; Yamada Т., Alpers D. H., Owyang C., Powell D. W., Silverstein F. E., eds. Textbook of Gastroenterology, 2nd ed. Philadelphia: J. B. Lippincott, 1995; 1: 395.) (Иллюстрация удалена)

Панкреатическая секреция



Объем секрета поджелудочной железы составляет 1500 мл в сутки. Он выделяется в тонкую кишку и содержит ферменты, гидролизующие белки, жиры и крахмал. Основная регуляция секреции осуществляется гормонами. Холецистокинин стимулирует секрецию ферментов, а секретин, прежде всего, секрецию бикарбонатов. Существует также регуляция секреции через блуждающий нерв. Общая секреция поджелудочной железы зависит от стимулирующих и ингибирующих факторов. Пептидные гормоны — панкреатический полипептид, глюкагон и соматостатин — преимущественно угнетают секрецию поджелудочной железы. Панкреатический полипептид выделяется островками поджелудочной железы после стимуляции блуждающим нервом, ингибируя, таким образом, панкреатическую секрецию и секрецию желчи. Глюкагон угнетает панкреатическую секрецию в условиях гипергликемии. Панкреатическая секреция аналогично желудочной может быть разделена на три фазы. Сложнорефлекторная фаза секреции происходит в ответ на вкус и запах пищи и осуществляется через блуждающий нерв. Желудочная фаза — это стимуляция панкреатической секреции, осуществляемая при растяжении желудка также посредством блуждающего нерва. Наиболее сильная — кишечная фаза, в которую стимуляция секреции происходит, в основном, при растяжении кишки. Клетки протоков поджелудочной железы изменяют состав поджелудочного сока за счет выделения в него бикарбоната и воды.

Для всасывания питательных веществ очень важны ферменты поджелудочного сока, выделяющиеся через панкреатический проток и сфинктер Одди. Такие протеазы, как трипсиноген, химотрипсиноген, прокарбоксипептидазы А и В и проэластаза выделяются из поджелудочной железы в неактивном виде. Трипсиноген превращается в двенадцатиперстной кишке в трипсин под действием энтерокиназы — фермента, вырабатываемого слизистой оболочкой двенадцатиперстной кишки (рис. 6-7). Трипсин, в свою очередь, переводит другие протеазы в активные формы химотрипсина, карбоксипептидаз А и В и эластазы. Он может также образовываться в результате самоактивации, т. е. перехода трипсиногена в трипсин. Секреция ферментов в неактивном виде предохраняет поджелудочную железу от самопереваривания, и если трипсиноген превращается в трипсин в поджелудочной железе, то возникает выраженное воспаление. Поджелудочная железа вырабатывает и ингибитор трипсина: его максимальная активность проявляется при рН, равном 3—7, но и она очень мала по сравнению с общей протеолитической активностью. Панкреатическая амилаза расщепляет полисахариды до олигосахаридов, липаза (Иллюстрация удалена) Рис. 6-7. Активация панкреатических протеолитических ферментов. Эптерокиназа (энтеропептидаза) играет основную роль в переводе трипсиногена в трипсин. Трипсин, в свою очередь, активирует не только трипсиноген, но и другие предшественники' протеаз. (По: Sleisenger M. H., FordtranJ. S., eds. Gastrointestinal Disease, 5th cd. Philadelphia: W. B. Saunders, 1993; 1: 994.) расщепляет эмульгированные триглицериды и эстераза — эфиры холестерина. Эти три последних фермента секретируются уже в активной форме, в отличие от протеаз, которые выделяются в виде неактивных предшественников. Колипаза, также секретирующаяся поджелудочной железой, является необходимым кофактором для действия липазы на триглицериды, так как нарушает взаимодействие между триглицеридами и желчными солями в мицеллах, и тем самым облегчает действие липазы на триглицериды.

Всасывание в кишечнике
Общая физиология всасывания в кишечнике
Кишечные ворсинки и микроворсинки



Тонкая кишка является главным местом переваривания и всасывания питательных веществ. Хотя общая ее длина составляет приблизительно 6 м, наличие ворсинок значительно увеличивает площадь переваривания и всасывания (рис. 6-8). Каждая ворсинка имеет центральный лимфатический капилляр, который проходит в ее середине и соединяется с лимфатическими сосудами в подслизистом слое кишечника (рис. 6-9). Кроме того, в каждой ворсинке есть сплетение кровеносных капилляров, по которым оттекающая кровь, в конечном счете, поступает в воротную вену. Помимо ворсинок в слизистой оболочке тонкой кишки имеются крипты, т. е. инвагинации, содержащие относительно недифференцированные клетки. Эти клетки восполняют слущенные клетки ворсинок, пролиферируя и мигрируя из Рис. 6-8(Иллюстрация удалена). Увеличение площади поверхности тонкой кишки за счет складок, ворсинок и микроворсинок. Цифры показывают степень увеличения площади всасывания по сравнению с гладкой поверхностью. Складки, ворсинки и микроворсинки вместе увеличивают площадь всасывания в 600 раз. (По:

Yamada Т., Alpcrs D. H.,0wyang С., Powell D. W., Silverstein F. Е., eds. Textbook ot'Gastroenterology, 2nd ed. Philadelphia: J. B. Lippincott, 1995; 2: 2497.) (Иллюстрация удалена) Рис. 6-9. Анатомия микрососудов ворсинок и центральный лимфатический сосуд. (По: Lundgren О. Studies on blood flow distribution and countercurrent exchange in the small intestine. Acta Physiol. Scand. 303:1, 1967; YamadaT., Alpers D. H., OwyangC., Powcll D.W., Silver-stein F. E., eds. Textbook of Gastro-enterology, 2nd cd. Philadelphia: J. B. Lippincott, 1995; 2: 2497.) крипт к верхушкам ворсинок (рис. 6-10). Хотя на ворсинках имеются и бокаловидные клетки и иммунные клетки, главными клетками ворсинок являются энтероциты. На апикальном участке своей мембраны каждый энтероцит покрыт микроворсинками, которые усиливают переваривание и увеличивают всасывательную поверхность тонкой кишки. Энтероциты живут только 3—7 дней, затем они обновляются. По мере созревания в энтероциты недифференцированные клетки начинают вырабатывать различные ферменты, такие как дисахаридазы и пептидазы, необходимые для окончательного расщепления питательных веществ перед их всасыванием на апикальных микроворсинках. В этом процессе участвуют также многие рецепторы и транспортеры. Они существенны для всасывания моносахаридов, аминокислот, липидов. Энтероциты тесно соединены друг с другом, так что практически вся абсорбция проходит в микроворсинках, а не через межклеточное пространство. Концентрация ферментов и транспортеров больше в проксимальном отделе тонкой кишки (двенадцатиперстная и тощая кишка), чем в подвздошной кишке, однако специфические рецепторы для всасывания отдельных веществ, например витамина B12, есть только в подвздошной кишке.

(Иллюстрация удалена) Рис. 6-10. Схема соотношений ворсинки—крипта в тонкой кишке. (По: Yamada Т., Alpers D. H., Owyang С., Powell D. W., Silverstein F. E., eds. Textbook of Gastrocnterology, 2nd ed. Philadelphia:

J. B. Lippincott, 1995; 2: 362.)

Основные механизмы всасывания и транспорта веществ



Химус продвигается от двенадцатиперстной кишки вдоль всей тонкой кишки для полного переваривания и всасывания ворсинками и микроворсинками. Мышечная стенка тонкой кишки состоит из внутреннего циркулярного и наружного продольного слоев и совершает, как минимум, два типа сокращений: сегментацию и перистальтику. Сегментация вызывает перемешивание химуса, перемещая содержимое кишечника маятникообразно за счет периодических сокращений сегментов тонкой кишки. Перистальтика — это продвижение перевариваемого материала в направлении к толстой кишке. Данные мышечные сокращения контролируются нервной системой кишечника с модуляцией со стороны парасимпатической нервной системы и гормонов. Для лучшего переваривания и всасывания содержимое кишечника должно быть жидким, поскольку вода обеспечивает пространство для диффузии веществ из просвета кишки к поверхности энтероцита. Присутствующая в кишечнике вода поступает через рот с пищей, секретируется органами желудочно-кишечного тракта и тонкой кишкой (около 1.5 л). В тонкой кишке всасывается большая часть из 8.5 л воды, которые, в среднем, поступают в нее за сутки, и для окончательного всасывания до толстой кишки доходит около 0.5—2 л воды (рис.6-11).

Как только электролиты, пептиды, углеводы и липиды достигают энтероцитов, для их всасывания включаются различные механизмы. Это может быть даль (Иллюстрация удалена) Рис. 6-11. Общий баланс воды в желудочно-кишечном тракте человека. (По: Berne R. M., Levy M. N., eds. Physiology. St. Louis: С. V. Mosby, 1983: 802.) нейшее расщепление веществ ферментами энтероцитов, например дорасщепление углеводов и пептидов, а может быть непосредственное включение активного транспорта веществ из просвета кишки, например некоторых электролитов. Наружная мембрана энтероцитов обладает низкой проницаемостью для полярных химических структур, поэтому для переноса через нее питательных веществ необходимы специальные мембранные белки. Активный транспорт требует затрат энергии АТФ для переноса веществ против градиента их концентрации; например, против градиента концентрации работает Nа+,К+-АТФаза, локализованная в базолатеральном участке мембраны энтероцитов и перемещающая К+ в клетку, а Na+ из клетки. Белки в мембране клетки являются транспортными каналами, по которым осуществляется перемещение ионов в двух направлениях против градиента концентрации. Транспортные каналы могут находиться в "открытом" и "закрытом" состоянии. Примером их служит механизм перемещения ионов хлора на апикальном участке мембраны энтероцитов. Вторичный активный транспорт представляет собой комплекс активных и пассивных механизмов: он происходит за счет активного ионного (с затратой АТФ) транспорта, который формирует градиенты концентраций этих ионов и сочетается с пассивным транспортом энергетически "невыгодных" молекул, осуществляемым, например, транспортером Nа+/глюкоза, расположенным на апикальной поверхности энтероцитов. Na+,K+-АТФаза создает низкую концентрацию Na+ в клетке. Натрий стремится войти в клетку и с помощью транспортера Nа+/глюкоза входит вместе с глюкозой, которая, в отличие от натрия, идет против градиента концентрации (рис. 6-12). Этот транспорт происходит пассивно, но он невозможен без работы Nа+,К+-АТФазы. Na+/глюкоза-транспортёр является примером котранспорта (симпорт), поскольку и натрий, и глюкоза перемещаются в одном направлении. Обменный транспорт (антипорт) осуществляется с помощью белков, перемещающих однозарядные молекулы в разных направлениях. Поступление в энтероцит аминокислот, пептидов, витамина В12, желчных кислот происходит по принципу механизма котранспорта с Na+ как и описанный ранее транспорт глюкозы. Вода перемещается пассивно в направлении повышенного осмотического давления. После абсорбции воды оба сектора (просвет кишки и слизистая оболочка кишки) становятся изоосмотичными. Поскольку осмотическое давление, в основном, создается электролитами, перемещение воды регулируется преимущественно их транспортом. Главным ионом, управляющим перемещением воды, является Na+. Однако глюкоза и другие молекулы также осмотически активны, поэтому их абсорбция сопровождается абсорбцией воды.


Похожие страницы: Исправление сбоев в функционировании системы сигнальной. Акробатика в квартире (Е. Анцупов). Вопросы и ответы. Предыстория человеческого парадокса. Антидепрессанты. Малахов Геннадий. Оздоровительные советы для пожилых на каждый день 2006 Года. Работа с выделенными органными фантомами. Когда начинать: несколько слов о безопасном сексе. Невидимая причина ожирения.. PsorINum (псоринум). Прямо к сердцу. Глава девятая психологическое дзю-до. Механизм восстановления зрения!.


(c) 2004-2008