Глава девятая. Расшифровка кода жизни

Молекулярный анализ легко обнаружит эти различия, потому что если эту последовательность ДНК разных индивидов порезать рестриктазой, то в одном случае получится один длинный фрагмент, а в другом — два коротких, общая длина которых соответствует длине первого. Таким образом выявляются два морфа в популяции: у некоторых индивидов имеется дополнительный участок рестрикции, а у других его нет. Такое явление называется полиморфизмом длины рестрикционных фрагментов (RFLP— restriction fragment length polymorphism). Его полезно учитывать при составлении карт, потому что этот полиморфизм служит нейтральным гетерозиготным маркером, с помощью которого можно определять близлежащие гены, особенно при составлении карт маркеров, приводящих к разным фенотипам. Кроме того, если RFLP расположен близко от дефектного аллеля, то его можно использовать для обнаружения этого аллеля подобно участку рестрикции внутри гена гемоглобина. В геноме встречаются и другие типы нейтральных вариаций последовательности, и RFLP оказался первым среди открытых учеными. Все они могут быть использованы для составления карт и обнаружения рецессивных дефектных аллелей.

Глава девятая. Расшифровка кода жизни



Как только Уотсон и Крик предложили свою модель ДНК, ученые поняли, что линейная последовательность оснований ДНК составляет ряд ключевых слов, или кодонов, соответствующих линейной последовательности аминокислот в белках. Кроме того, как заметил Крик, поскольку и ДНК, и белки представляют собой линейные последовательности элементов, обе последовательности должны быть колинеарными. Это значит, что первый кодон гена должен кодировать синтез первой аминокислоты, второй ген — второй аминокислоты и т. д. Оставалось только логически выяснить, какие именно сочетания четырех оснований A, G, С и Т образуют эти кодоны.

Белки состоят из 20 видов аминокислот. Предположим, что кодону соответствуют последовательности из двух оснований, например АА или СТ. Так как оснований всего четыре, получается: 4 х 4 = 16 сочетаний. Этого недостаточно для 20 аминокислот. Далее предположим, что кодон — это триплет, то есть последовательность из трех оснований. Теперь получается: 4 х 4 х 4 = 64 сочетания, то есть больше 20. В таком случае либо 44 триплета являются бессмысленными, либо мы имеем вырожденный код. Термин «вырожденный код» обозначает код, в котором разные знаки могут иметь одно и то же значение. Некоторое время серьезно обсуждался и другой механизм кодирования, в котором одни основания могли передавать код, а другие — служить «запятыми», отделяющими одни ко-доны от других.

Как узнать, какая из предложенных схем верна? Крик с коллегами провел серию блестящих опытов на мутантах rII фага Т4, потому что мутанты и дикие типы фагов отличить друг от друга легко (вспомним, что мутанты rII не растут на штамме К). В экспериментах применялся мутагенный краситель профлавин, молекулы которого вставляются между парными основаниями двойной спирали ДНК. При репликации и рекомбинации получаются молекулы со вставкой или с удалением нескольких нуклеотидов. Для простоты будем считать, что каждая мутация в результате действия профлавина вставляет или удаляет только одно основание.

Не осознавая этого при чтении текста, мы пользуемся так называемой рамкой считывания. Это своего рода прямоугольник, который передвигается вдоль слов, определяя их границы, обозначенные пробелами. Рамка постоянно сужается или раздвигается в зависимости от длины слова, но если предположить, что все слова состоят, например, из 3 букв, то ширина рамки будет постоянной. С помощью такой рамки легко прочитать следующие осмысленные слова:

КОТ ТОМ ЕЩЕ МАЛ УХО УСЫ НОС, даже если между ними не будет пробелов. Теперь предположим, что в одно из слов попала лишняя буква; тогда рамка считывания сдвинется и получатся слова:

КОТ ТОМ СЕЩ ЕМА ЛУХ ОУС ЫНО С и так далее. После вставки получаются бессмысленные слова, но какой-то смысл восстановить можно, если компенсировать вставку удалением другой буквы, возвращающим рамку считывания в нормальное положение:

КОТ ТОМ СЕЩ ЕМЛ УХО УСЫ НОС.

По крайней мере, можно прочитать слова «ухо», «усы» и «нос», несмотря на бессмыслицу в середине фразы.

Приблизительно так же в ДНК строится последовательность кодонов из трех оснований, и мутация со сдвигом рамки может переместить рамку считывания в том или другом направлениях, которые мы обозначим как П и Л (правая и левая стороны). Именно из этого исходили Крик и его коллеги, приступая к экспериментам. Они начали с одного вызванного профлавином мутанта под названием FC0, произвольно обозначив его как вызывающий сдвиг в направлении П. Потом они смогли выделить компенсирующих мутантов Л. Так как FC0 является мутантом гII, он не может расти на штамме К; но если фаги FC0 еще раз подвергнуть мутации посредством профлавина и поместить их в среду со штаммом К, то некоторые фаги образуют стерильные пятна, потому что у них произошла компенсирующая мутация Л. Такую вторую мутацию называют супрессорной (подавляющей), или супрессором. Супрессор — это мутация, которая компенсирует эффект другой мутации. Так ученые выделили ряд супрессоров (обозначив их как FC1, FC2 и т. д.) и скрестили двойные мутанты (имеющие одновременно мутации П и Л) с дикими фагами, изолировав Л-мутантов. Так как FC1, FC2 и другие все были Л-мутантами, то их супрессоры по определению должны были быть П-мутантами. Так, передвигаясь «взад» и «вперед», Крик с коллегами получили ряд П-мутантов и ряд Л-мутантов.

Уже сама возможность выделять таких мутантов подтверждает истинность модели, но нужно было провести еще два важных опыта. Во-первых, любой Л-мутант должен был подавлять любого П-мутан-та (по крайней мере, если их участки располагаются близко друг от друга), а группа Крика получила много таких парных комбинаций. Ученые обнаружили, что за несколькими исключениями двойные мутанты, содержащие по одной П- и Л-мутации походили на фагов дикого типа. Но самым впечатляющим был эксперимент с получением тройной Л- или П-мутации. Легко доказать, что если код действительно состоит из триплетов, то сдвиг на три буквы влево или право восстанавливает рамку считывания. Именно так и получилось: тройной П- или Л-мутант обычно имели дикий фенотип, если мутации происходили близко друг от друга. Эти опыты послужили убедительным доказательством того, что генетический код состоит из триплетов и читается без «запятых», посредством рамки считывания.

Более того, эта система функциональна только в случае с вырожденным кодом, так как между участками мутаций П и Л или между тремя П-мутациями подряд образовывалось несколько неправильных триплетов. Но фенотип в общем случае оказывался «диким», потому что 64 триплета (или, по меньшей мере, их большинство) кодируют производство какой-либо аминокислоты. Даже если в двойном или тройном мутанте оказывалось несколько неправильных кодов, белки с несколькими «неправильными» аминокислотами получались вполне функциональными. Если бы кодонами были только 20 триплетов, а остальные 44 оказались бессмысленными, то случайная мутация, вероятнее всего, создавала бы бессмысленные кодоны, и синтез белка останавливался бы всякий раз,подходя к такому «пустому месту». Поскольку обычно этого не происходит, код должен быть вырожденным. В действительности, как мы увидим, бессмысленными являются только три из 64 кодонов.

Как строятся белки?



Итак, информация, определяющая порядок аминокислот в белке, хранится в ДНК в виде ряда триплетных кодонов. Но как последовательность оснований ДНК превращается в реальный продукт? Конечно, чертежи и схемы для строительства очень важны, но для построения здания требуется ряд сложных операций.

Строение клеток эукариот накладывает на такие операции некоторые ограничения. ДНК хранится в хромосомах, располагающихся в ядре, а белки синтезируются в цитоплазме, в органеллах — рибосомах, которые по большей части покрывают мембраны эндрплазматической сети (рис. 9.1). Если ДНК содержит чертежи для строительства белков, а сама «стройка» располагается в цитоплазме, то, как чертежи попадают на стройку? Это все равно, что получить важную формулу из редкой книги, которую не позволяют выносить из библиотеки.

Рис. 9.1. Эндоплазматическая сеть клеток эукариот состоит из мембран, обычно расположенных параллельно друг другу и покрытых крохотными частицами — рибосомами, которые служат фабриками по производству белка В этом случае нужно сделать фотокопию и принести фотокопию в мастерскую. Точно так же обстоит дело и в клетке. Копией служит РНК.

Молекулы рнк: инструменты для синтеза белка



В 1940-х годах, когда ученые еще недостаточно хорошо представляли строение нуклеиновых кислот, были получены доказательства того, что синтез белков всегда сопровождается синтезом рибонуклеиновой кислоты (РНК). Как было показано в гл. 7, РНК отличается от ДНК тем, что вместо сахара дезоксирибозы она включает в себя сахар рибозу, что она, как правило, состоит из одной цепи, что место тимина в ней занимает урацил. Но по своей структуре урацил походит на тимин, и он может связываться с аденином и образовывать пару A—U вместо пары А—Т в ДНК. Одиночная цепь РНК может складываться и образовывать двойные участки, удерживаемые вместе парами оснований A—U и G—С.

Почему получилось так, что в живых организмах содержатся два вида нуклеиновых кислот, похожих друг на друга, но вместе с тем и разных? Согласно одному из мнений РНК и ДНК естественным образом появились из «первичного бульона», на ранних этапах эволюции живой материи. Таким образом, вопрос сводится к тому, насколько полезными они были для первобытных клеток? Имеются доказательства того, что геном первобытных клеток состоял из РНК, а не из ДНК. Со временем по неясным причинам геномная РНК уступила свое место ДНК. В процессе отбора две молекулы приобрели каждая свою специализацию: ДНК переносит генетическую информацию, а РНК служит посредником для синтеза белка.

Надежное свидетельство того, что РНК переносит информацию от ДНК в цитоплазму, было получено в ходе опытов с использованием быстрооб-менивающихся радиоактивных меток. Такого рода эксперименты позволяют проследить за перемещением вещества, подобно тому, как за перемещением воды в реке можно наблюдать по окрашенному пятну. Клетки эукариот подвергаются быстрому воздействию уридина (это нуклеотид с урацилом), помеченного тритием, радиоактивным изотопом водорода (3Н-уридин). Уридиновая метка встраивается в любую РНК, которую синтезирует клетка за этот период. Из-за краткого времени воздействия такую метку называют быстрой, или пульсовой. После этого 3Н-уридин растворяют в большом количестве немеченого уридина. Затем начинают следить за меченой РНК, удаляя через разные промежутки из раствора часть клеток и подготавливая их к авторадиографии. Темные пятна, оставленные электронами, испускаемыми атомами трития, указывают на местоположение РНК. Вначале все метки содержатся в ядре. Затем их количество в ядре уменьшается, но увеличивается — в цитоплазме. Это говорит о том, что РНК переходит из ядра в цитоплазму. Чем больше времени прошло после прекращения периода мечения, тем меньше остается меток. Это говорит о том, что РНК, образуемая в период мечения, со временем разлагается, то есть она нестабильна. Таким образом, клетка образует РНК, использует ее в течение некоторого времени для каких-то целей, а затем расщепляет.

Другое доказательство было получено в ходе работ Эллиота Волкина и Лоренса Астрачана, изучавших нуклеиновые кислоты, образующиеся в бактериальных клетках после инфицирования фагом. Им удалось выделить новый вид РНК, состав которой удивительно похож на состав фаговой ДНК, но отличается от бактериальной ДНК. Эта РНК также быстро разлагается.

Для нуклеиновых кислот характерным показателем служит так называемое отношение оснований (А + T)/(G + С). Для ДНК разных организмов этот показатель очень сильно различается, и с его помощью можно идентифицировать близкородственные виды, а также классифицировать их на том основании, что у близких видов должны быть похожие ДНК. В отличие от ДНК у РНК этих организмов отношение оснований довольно постоянно. Основная доля их РНК приходится на рибосомную РНК (рРНК), то есть на те большие молекулы, которые составляют основу рибосом. Рибосома — это довольно большая внутриклеточная частица, состоящая из двух неравных частей. Каждая часть состоит из 30— 40 различных белков. Некоторые из них являются ферментами, помогающими выстраивать аминокислоты в новую белковую цепь. Они присоединяются к длинным молекулам рРНК, так что вся рибосома похожа на неправильную ягоду малины или ежевики. Среди других РНК большинство составляют молекулы гораздо меньшего размера, которые называются транспортными РНК (тРНК) (их функцию в процессе синтеза белка мы объясним далее). Но эти РНК быстро не разлагаются и после своего образования могут длительно существовать. По-видимому, вещество, обнаруженное Астрачаном и Вол-кином, и вещество, помеченное быстрообмениваю-щимися метками в клетках эукариот, были разными видами РНК. Сидней Бреннер, Франсуа Жакоб и Мэтью Меселсон провели другой эксперимент с метками, доказав, что РНК, образуемая после инфекции фага, на небольшой промежуток времени присоединяется к рибосоме, а потом разлагается. Они предположили, что эта РНК должна переносить информацию от фаговой ДНК к рибосомам, и назвали ее информационной, или матричной, РНК (мРНК). Рибосомы представляют собой всего лишь фабрики по производству белка. Они временно присоединяются к матричной РНК, которая программирует их на синтез отдельного белка.

Рнк-транскрипция



Сейчас доказано, что РНК образуется в результате того же спаривания комплементарных оснований, с помощью которого образуется и двойная спираль ДНК из одинарной цепи (рис. 9.2). Этот процесс называется транскрипцией. Его выполняет особый сложный фермент — РНК-полимераза. Возле каждого гена располагается участок — промотор с последовательностью оснований, к которым присоединяется РНК-полимераза, или, как говорится, которые она распознает.

Рис. 9.2. В процессе транскрипции на одной из цепей ДНК образуется комплементарная ей цепь РНК. Этот процесс похож на синтез новой цепи ДНК во время репликации, но со следующими отличиями: а) копируется только одна цепь ДНК; б) синтезируется РНК, а не ДНК; в) процесс происходит при помощи фермента РНК-полимеразы Затем полимераза слегка приоткрывает двойную спираль и движется вдоль гена, нуклеотид за нуклеотидом, синтезируя молекулу РНК с последовательностью оснований, комплементарных одной из цепей ДНК, служащей матрицей. При этом урацил U образует пару с аде-нином А, а цитозин С — с гуанином G. Получившаяся молекула называется транскриптом. Последовательность оснований транскрипта идентична комплементарной цепи ДНК, то есть кодирующей цепи, за исключением того, что место тимина занимает урацил. Относительно простой процесс транскрипции, описанный здесь, происходит в бактериях. Процесс образования мРНК эукариот несколько сложнее, о чем говорится в гл. 11.

С развитием электронной микроскопии стало возможным наблюдать процесс транскрипции непосредственно (рис. 9.3). Транскрипцию можно осуществлять и in vitro, в пробирке, то есть искусственно, при участии выделенной из клеток ДНК, РНК-полимеразы и четырех видов нуклеотидов РНК.

Убедительное доказательство комплементарности последовательности оснований ДНК и РНК было получено в ходе экспериментов по гибридизации нуклеиновых кислот. В 1960 году Поль Доти и Джулиус Мармур обнаружили, что при высокой температуре водородные связи между основаниями двух цепей ДНК разрываются, так что ДНК денатурирует, и ее цепи отделяются друг от друга. Если раствор денатурированной ДНК медленно охлаждать, то одинарные цепи со временем находят комплементарные цепи и снова образуют стабильные двухцепочечные молекулы. Если во время такого охлаждения, или «отжига», добавить одноцепочечные молекулы РНК, то образуются также и гибридные молекулы ДНК—РНК, но для этого требуются молекулы, полностью комплементарные цепям ДНК.

Рис. 9.3. Электронная микрофотография транскрипции РНК. ДНК имеет вид тонкой нити, проходящей через центр каждого участка, похожего по форме на перо. От ДНК отходят молекулы РНК: транскрипция самых длинных уже почти закончилась, транскрипция самых коротких только началась. Это рибосомные РНК, которые входят в структуру рибосом Обычно в ходе таких экспериментов денатурируют ДНК и пропускают раствор одинарных цепей через нитроцеллюлозные фильтры. Если на эти фильтры нанести раствор меченой РНК, то РНК-транскрипты с комплементарными последовательностями соединятся с ДНК, и их можно будет легко обнаружить измерив радиоактивность фильтра. Молекулы РНК, не имеющие комплементарной последовательности, не соединятся с ДНК и пройдут через фильтр. В молекуле ДНК две цепи. Мы показали, как одна из цепей служит матрицей для РНК-полиме-разы, которая строит РНК. Но что если матрицей для разных РНК в разное время служат разные цепи ДНК? Джулиус Мармур попытался дать ответ в эксперименте с фагом SP8. ДНК этого фага представляет собой одну двойную молекулу, цепи которой сильно отличаются по плотности (чем больше гуанина в цепи, тем она плотнее), поэтому их легко разделить в растворе CsCl с градиентом плотности. Выяснилось, что РНК, образовавшаяся после инфицирования SP8, образует гибриды только с одной из цепей. Это доказывает, что матрицей для синтеза РНК служит только одна цепь ДНК. В случае с другими вирусами и большинством остальных клеток оказалось, что для синтеза РНК используются различные участки разных цепей ДНК, но, как правило, на протяжении отдельного участка транскрибируется только одна цепь. Этого и следовало ожидать, так как молекулы РНК, транскрибированные с комплементарных цепей одного гена, кодировали бы совершенно разные белки, и только один из них был бы функциональным белком этого гена.

Теперь, в свете всего сказанного, следует несколько расширить понятие гена, так как в клетках имеются два типа генов. Большинство генов кодируют информацию для синтеза специфического вида белка; транскриптами с этих генов служат мРНК, которые и заведуют синтезом белка. В ДНК также должны быть включены последовательности для синтеза стабильных рибосомных и транспортных РНК, поэтому в геноме содержатся гены для рРНК и тРНК. Продуктами этих генов служат не белки, а РНК-транскрипты, стабильные компоненты клеток, составляющие часть аппарата по синтезу белка, как будет показано далее.

Трансляция



Перенос информации с ДНК на РНК называется транскрипцией, а перенос этой информации с мРНК в белок — трансляцией. Обычно матричные РНК в течение некоторого времени программируют рибосомы на производство определенного белка, а затем разрушаются. Рибосома сама устанавливает рамку считывания, пропуская мРНК между своими половинами и передвигая мРНК по три основания за раз, начиная с 5'-конца и заканчивая 3'-концом. Одна молекула мРНК может проходить одновременно через несколько рибосом, которые синтезируют один вид белка друг за другом. Несколько рибосом, присоединенных к одной мРНК, называются полирибосомой.

Каждая мРНК содержит серию кодонов, скопированных с ДНК, но в аминокислотах нет химических структур, которые распознавали бы нужные кодоны. Тут в действие вступают транспортные РНК (рис. 9.4). В каждой клетке имеется по меньшей мере по одному виду тРНК для каждой из 20 аминокислот. В клетке также содержится 20 разных видов ферментов (аминоацил-РНК-синтетаз), по одному на каждую аминокислоту. Каждый фермент распознает строго определенную тРНК вместе с соответствующей ей аминокислотой и соединяет их. В результате получается аминоацил-тРНК. Три основания тРНК образуют антикодон, комплементарный кодону мРНК, так что каждая аминоацил-тРНК может подсоединяться к мРНК в нужном месте.

Рис. 9.4. Общая структура молекулы транспортной РНК. Обратите внимание на значительные внутренние сгибы, образованные парами G—C и A—U. Аминокислота присоединяется к одному концу, а на другом конце располагается петля с антикодоном, который распознает кодон матричной РНК. Структуры некоторых оснований слегка изменены добавлением небольших химических групп, таких как гидроксильная и метильная группы Трансляция (рис. 9.5) начинается с того, что мРНК входит в рибосому. Кодоны мРНК распознаются по очереди, и тРНК подводят к ним соответствующие аминокислоты. Так образуется полипептидная цепь, последовательность аминокислот в которой определяется последовательностью кодонов. Важно отметить, что трансляцию одновременно производят две тРНК. Аминокислота одной тРНК соединяется с аминокислотой другой, после чего первая тРНК отсоединяется. После этого рибосома передвигает мРНК на один кодон дальше; вместе с этим перемещается и вторая тРНК, освобождая место для третьей тРНК. Затем процесс повторяется, и так полипептидная цепь растет шаг за шагом, причем очередная новая аминокислота всегда присоединяется к последней тРНК. (Когда производство белка заканчивается, эта цепь прерывается.) Это довольно точная модель трансляции, хотя некоторые подробности еще ждут своего объяснения.


Похожие страницы: Зубная боль. Особенности мышечной системы. Глава 6 Совсем другая медицина интегральная системная медицина - медицина здоровья, медицина будущего. Глава 5. Таблетки от усталости.. Общие заболевания. Выписка медикаментов. Под редакцией А. А. Визеля. Саркоидоз: от гипотезы к практике. Идеомоторный массаж. Питание человека. Варианты и аномалии развития скелета конечностей. 3. Власоглав. Двуликий янус. Катар желудка и кишечника.


(c) 2004-2008